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Abstract

The Normal Kernel Coupler (NKC) is an adaptive Markov Chain Monte Carlo (MCMCQ)
method which maintains a set of current state vectors. At each iteration one state vector is
updated using a density estimate formed by applying a normal kernel to the full set of states.
This sampler is ergodic (irreducible, Harris recurrent and aperiodic) for any continuous
distribution on d-dimensional Euclidean space. The NKC outperforms standard MCMC
methods on a variety of unimodal and bimodal problems in low to moderate dimension. We
illustrate the utility of the NKC by fitting a mixture model for genetic instability in cancer
cells. This model, which which has two distinct and dissimilar modes, is not well handled
by standard MCMC methods. In contrast, the NKC efficiently samples from this model and

yields results that are consistent with current scientific understanding.

Keywords: Bayesian Estimation, Multi-chain samplers, Loss of heterozygosity, Cancer ge-

netics, Posterior distribution



1 Introduction

Markov Chain Monte Carlo (MCMC) is a method of performing numerical integration for
analytically intractable functions that can expressed as distributions (Metropolis et al., 1953;
Hastings, 1970). After an initial burn-in period, a properly constructed MCMC sampler will
generate (non-independent) samples from arbitrarily complicated probability distributions
without requiring specification of normalizing constants. Ergodic averages of the samples
thus generated can be used to estimate the expectation of arbitrary functions under the
target distribution.

Although many MCMC techniques are available which effectively sample from unimodal
distributions, efficient sampling from multi-modal distributions remains a difficult problem.

To illustrate the difficulty in using MCMC to sample from multi-modal distributions,
consider a distribution formed by combining two equally weighted bivariate normals, one

centered at (0,0) and the other at (9,9). This distribution can be expressed as
1 1
XN§N2((010)5 12)+§N2((919)a 12) (1)

Contours of the corresponding density are plotted in Figure 1.

The two most frequently applied MCMC techniques are the Gibbs sampler (Geman &

Figure 1: Density contours for a mixture of 2 unit-variance bivariate normals
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Geman, 1984) and the variable-at-a-time Metropolis sampler (Metropolis et al., 1953) with
a normal proposal. Both methods update only a single parameter at each iteration, so
that all moves are parallel to one of the coordinate axes. Since the modes of the example
distribution are non-overlapping and do not lie along the coordinate axes, neither sampler is
able to move effectively between the modes of this distribution (see Figure 3(a) and 3(b)).
While it is possible in this case to transform the parameters so that the modes lie along the
axes, finding a suitable transformation may be difficult or impossible for realistic problems.

Another standard MCMC technique is the random walk Metropolis sampler using a multi-
variate normal proposal distribution. Unlike the variable-at-a-time methods, this Metropolis
sampler can generate moves between the modes of the example distribution, provided that
the variance of the proposal distribution is sufficiently large. Unfortunately, a proposal with
a variance large enough to ensure moves between the modes will also generate many points
that are near neither mode (see Figure 3(c)). This will cause a large proportion of candi-
date points to be rejected, and will make the sampler very inefficient. This is particularly
problematic in high dimensions and when the modes are well separated.

Although the MCMC literature contains numerous references to the difficulties created
by multi-modal distributions, there are only a handful of MCMC techniques designed to
effectively sample from such distributions. Gelman & Rubin (1992) recommended creating
a custom independence proposal constructed from a mixture of multivariate normal distri-
butions based on pre-simulation exploration. Geyer (1991) introduced Metropolis-Coupled
MCMC, which uses a set of concurrent MCMC samplers each operating on one of a set
of successively smoother distributions. Coupling these samplers by occasionally swapping
current states allows the roughest distribution, corresponding to the density of interest, to
inherit mobility possible in the smoother distributions. Meanwhile Mariani & Parisi (1992)
and later Geyer & Thompson (1994) describe Simulated Tempering, a related method which
allows a single sampler to move through the set of distributions rather than having a set of
concurrent samplers. Neal (1996) extended this work to reduce the effort required for tun-

ing. Recently, Tjielmeland & Hegstad (2000) introduced a method for incorporating “mode



Figure 2: Possible moves for the Gibbs Sampler, variable-at-a-time Metropolis, and (multi-
variate) random-walk Metropolis for the point represented by the red dot.
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finding” moves using a standard numerical maximization technique with a random starting
locations into a standard MCMC sampler.

Unfortunately, each of these methods requires considerable problem-specific effort to
be invested before useful results can be obtained. The construction of a custom proposal
distribution requires not only the location of the modes of the distribution, but also requires
determination of the appropriate covariance matrix for each mode. The tempering methods
require selection of the smoothed distributions and derivation of appropriate probabilities of
swapping between samplers. In addition, only a small fraction of the MCMC states generated
by the tempering methods correspond to the distribution of interest, reducing their efficiency.

There remains a need for MCMC methods that efficiently sample from multi-modal
distributions and that minimize the amount of effort required from the statistician. It is in
this context that we introduce the Normal Kernel Coupler (NKC).

In section 2, we introduce the Normal Kernel Coupler. Section 3 discuss the convergence
properties of the NKC. We report on a simulation study comparing the performance of the
NKC with several standard methods in section 4. Section 5 shows the successful application
of the NKC to a bimodal model for the genetic instability of esophageal cancers. We provide

conclusions and discussion in section 6.

2 The Normal Kernel Coupler (NKC)

The Normal Kernel Coupler (NKC) is an MCMC sampler that maintains a set of current
states, each of which converges to the same target distribution. At each iteration, a new value
is proposed for one component state using a kernel density estimate constructed from the
entire current set. Since the kernel density estimate makes very few assumptions about the
form of the target distribution, the Normal Kernel Coupler’s efficiency is largely independent,
of the number and location of modes. When properly constructed, the NKC efficiently sam-
ples from both unimodal and multi-modal target distributions, even when the distribution

is oddly shaped or the modes are well separated.



2.1 The Algorithm

Let m(X), defined on X € R¢ (d-dimensional Euclidean space), be the density of the dis-
tribution of interest. Let p(X) be a function which is proportional to 7(X). Let Xt(') =
(Xt(l), R t(c)), be a vector of component states where each Xt(i) € R?. Note that sub-
scripts index time, while parenthesized superscripts index component states.

We will use Nd( 1, E) to represent a d-variate normal distribution with mean vector u
and covariance matrix =. In a slight abuse of notation we will use Nd( v | 1, E) to represent
the density at v of a d-variate normal with mean vector  and covariance matrix =.

The Normal Kernel Coupler iterates through six step a variant of the Metropolis-Hastings

update cycle:
1. Select a component state, Xt(i) 1 €1,..,C, to update.

2. Propose a new state Y for component i using a normal kernel density estimate by

randomly selecting a source component, Xt(u), where
u ~ Discrete Unifiorm(1, ..,C)
and then generating a value from a normal centered at Xt(u):
YOy~ Ny( XM, 02V,
so that the density of Y®| X is

a(VOIX) = q(rOIx®,xC9)

C
= S NJ(YOIXD, #2V) 4 ZNo(YO X, 1Y)
J#

where h? is a bandwidth tuning constant and V determines the shape and scale of the

normal kernel.



3. Compute the Metropolis-Hastings acceptance probability

o(X[, YOI =

4. Accept the proposed point Y@ and set

Xt(—if—)l « v

with probability a(X”, Y®| X, otherwise,

Reject the proposed point and set

Xt(-zl—)l — Xt(l)'

5. Copy the remaining states

Xit = X

6. Increment time: ¢ < (¢ + 1).

3 Convergence

A concern with adaptive MCMC methods is the possibility that such methods may fail
to converge to the desired stationary distribution. Fortunately, the NKC lends itself to a
straightforward proof that it is ergodic (irreducible, Harris recurrent and aperiodic), which
is sufficient to ensure convergence.

Define the joint state as the vector formed by concatenating each of the component states,



XO = (XM, ., X(©), the joint target distribution by

C

T (XO) = [[=(X®)

i=1
and the joint proposal density by

c
0. (YOIXO) = (v | XO) [T (v = X0)

i=1
where 0(-) is the indicator function that takes value 1 when its argument is true and 0
otherwise, and ¢; cycles through a permutation of the integers 1,...,C. With these defini-
tions, the NKC is seen to be a variable-at-a-time Metropolis-Hastings sampler for the joint
target where each component state, X(®, is considered a parameter. In this context, it is
straightforward to prove ergodic convergence, as expressed by the following theorem (see the

Appendix for the proof) :

Theorem 1 If 7 is a continuous distribution on R?¢, h? > 0, and V is positive definite, then
the NKC constructed for © using h* and V is ergodic (m.-irreducible, Harris-recurrent, and

aperiodic) with unique invariant distribution ..

The behavior of the individual components is then a trivial extension:

Corollary 2 The distribution of the sequence of values taken by each component state X® =

{Xt(i),t =0,1,..} converges to .

4 Simulation Study

We performed a simulation study to compare the efficiency of the NKC to that of three
standard MCMC methods; a custom independence proposal, a variable-at-a-time Metropolis

sampler, and a random-walk Metropolis sampler using a multivariate normal proposal.



4.1 Target Distributions

For the simulations, we constructed a set of seven test distributions which abstract dif-
ferent characteristics of posterior densities encountered in practice. Each distribution was
given a descriptive title. These are “OneMode”, “Narrow”, “TwoMode”, “BigAndSmall”,
“HeavyAndLight”, “Banana”, and “T'woNarrow”. Formulae and contour plots for these

distributions are given in tables 1 and 3 respectively.

OneMode This target distribution, a spherical d-variate normal with identity covariance
matrix, represents an ideal target distribution for which all MCMC methods should

perform well.

Narrow The second sampler is a d-variate normal with an AR-1 style covariance matrix
(see table 2) with with correlation coefficient p = 0.95. It represents a more realistic
target distribution which is approximately normal but which has highly correlated

parameters.

TwoMode The third distribution is composed of two equally weighted d-variate normals,
each with an identity covariance matrix. The first is centered at (0,0, ..,0), while the
second is centered at (9,9,9,...,9). This target mimics the behavior of distributions
with highly separated modes, where each mode is essentially identical and is well

modeled by a multivariate normal.

BigAndSmall The fourth sampler is also formed using two equally weighted d-variate
normals, one at (0,0,..,0) and the other at (9,9,..,9). However, the second mode
now has a identity covariance matrix scaled down by a factor of %. This target
exhibits different scales and different sized basins of attraction. These features can

cause samplers to incorrectly assign extra mass to the larger mode.

HeavyAndLight The fifth sampler is constructed using the same normals as the previous

sampler, “BigAndSmall”, but the larger mode is now assigned only %th of the mass.



Table 1: Densities for the target distributions used in the simulation study. [ is the
Identity Matrix. AR;(p) is an AR-1 covariance matrix with correlation parameter p (see
table 2).

Target Distribution

OneMode N4((0,0,..0), I)

Narrow N«((0,0,..0), AR;(0.95))

TwoMode iN4((0,0,..0), I) +1Nu((9,9,..,9), I)

BigAndSmall 1Nd((o 0,..0), I) +iN4((9,9,..,9, £I)

HeavyAndLight £N4((0,0,..0), I) + £N4((9,9,..,9), 151)

Banana iN4((-1.5,1.5,..1.5), AR;(—0.95) ) + sNg4((1.5,1.5,..,1.5), AR;(0.95))
TwoNarrow IN4((0,0,..,0), AR:(—0.95) ) + 3N4((9,9,..,9), AR1(0.95))

Table 2: AR-1 style covariance matrix with correlation parameter p

1 p p2 pC—l

p 1 p pg‘z

AR{(p)=]| »# » 1 -
pC’—l ,OC_2 pC—3 1



Figure 3: Contour plots of the target distributions used in the simulation study
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This makes it very likely that samplers will incorrectly assign too much mass to the

larger mode.

Banana The sixth target distribution is also formed from two d-variate normals. These two
normals are centered at (1.5,1.5,..,1.5) and (—1.5, 1.5, ..,1.5). The first normal has an
AR-1 style covariance matrix with correlation coefficient p = 0.95. The second mode
has an AR-1 structure with correlation coefficient p = —0.95. This creates two narrow
normals aligned perpendicularly, with some overlap at (0,0,..,0). This target mimics

the complex topologies which can can seriously reduce the efficiency of many samplers.

TwoNarrow The seventh target also has two perpendicular modes with AR-1 structure
with p = 0.95 and p = —0.95 respectively. This time, the modes are quite separated,
with one at (0,0,..,0) and the other at (9,9,..,9). This combines the problems of

different covariance structure within modes with those of separated modes.

4.2 Samplers

Four samplers were used for the simulations, a Metropolis-Hastings sampler using a custom
independence proposal constructed from a mixture of normal distributions, a variable-at-a
time Metropolis sampler using a normal proposal, a random walk Metropolis sampler using
a multivariate normal proposal distribution, and Normal Kernel Coupler.

We used two versions of each sampler for the simulations. To capture the best possible
performance of the individual samplers we constructed the first version using an appropriate
function of the true covariance. The second sampler was constructed “adaptively” using a
multi-stage tuning method method.

Our multi-stage tuning method similar to the one proposed by Raftery & Lewis (1996).
A sequence of runs, each of length 1,000, was used to estimate the overall and per-mode
variance. For the first run, the MCMC samplers were constructed using a preliminary
variance estimate. The initial estimates of the variances of each mode was 0.51,. For

unimodal distributions, this was also the the estimate of the overall variance. For bimodal

11



Figure 4: Proposal distributions for the samplers used in the simulation study. Ten points
(tick marks along the x-axis) were sampled from a bimodal posterior (solid curve). The
broken curve shows the proposal distribution for one of the points, which is marked by the
circle. The variance for the proposal distributions and the density estimate for the NKC
were computed using the 10 points shown.
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distributions, the overall variance estimate was computed using the estimated the mode
variance and known locations of the mode centers.

After each 1,000 iterations, new variance estimates were computed. These estimates
were then used to construct the samplers for the next set of iterations. This iterative tuning
process was performed for one third of the total number of iterations. EG, when the total
number of iterations was 10,000, three runs of length 1,000 were used to tune the variance
estimates. Once the tuning phase had been completed, the variance remained fixed for the
remaining iterations.

At each stage, the overall variance was estimated by computing the variance matrix of
the simulation output. For the bimodal targets, the variance of each mode was estimated
by dividing the parameter space along the first dimension halfway between the modes. The
sample values in each half-space were then used to estimate the corresponding mode variance.

The custom independence proposal was constructed from either a single multivariate nor-
mal distribution for unimodal targets, or from a mixture of two equally weighted multivariate
normal distributions for bimodal targets. Each normal was centered at one of the posterior
modes and was assigned either the true or estimated variance of the mode. Note that the
independence proposal using the true variance of the modes simulates directly from the true
target distribution in every case except the HeavyAndLight target. For the HeavyAndLight
target the independence proposal gives equal weight to the two modes when the true distri-
bution gives the smaller (in area) mode seven times more weight. Thus, except in this one
case, this independence proposal gives the best possible performance for a sampler which
maintains only a single current state.

The random-walk Metropolis sampler was constructed using a d-variate normal distribu-
tion. The variance was set to the known or estimated overall variance scaled by %, the
optimal scaling factor derived by Gelman et al. (1995). The componentwise random-walk
Metropolis sampler used a the univariate normal proposal with variance set 2.382 times the
true or estimated marginal variance of the parameter being updated.

The NKC was constructed as described in section 2.1 with the variance matrix V set to

13



the average of the true or estimated variances of the individual modes. The scaling factor

2
h? was set to 1.4 (é) T+

4.3 Setup

Two sets of simulations were run. The first set used target distributions defined in four
dimensions, and the second set used distributions defined in twenty dimensions. For both
sets of simulations, the NKC used 200 component states. Twenty trials were performed for
each combination of sampler, target distribution, and number of components.

The states of each sampler were randomly initialized to one of the modes of the target
distribution plus a small random displacement: Xéc) ~ Ny(pi,0.05I), where p; is the peak
of the ith mode. This mimics the practice of initializing the MCMC samplers using modes
located via a numerical maximization technique.

Since the primary cost of most MCMC simulations is the expense of evaluating the (un-
normalized) density of the target distribution, the results are displayed in terms of the total
number of likelihood evaluations rather than in execution time. For the four dimensional
simulation, cumulative univariate means and quantiles were computed after 1,000, 2,000,
3,000, 4,000, 8,000, and 10,000 iterations. For the twenty dimensional simulation we com-
puted cumulative univariate means and quantiles after 10,000, 20,000, 30,000, 40,000, 80,000,
and 100,000 iterations.

For the samplers which used the true posterior variance, no attempt was made to exclude
burn-in iterations since the samplers were started at posterior modes. For the multi-stage
tuned samplers, the iterations during the tuning phase (the first 1/3 of the iterations) were
discarded when computing later summary measures. Overall mean squared errors (MSEs)
were computed from the univariate summary measures by collapsing across dimensions and
simulation runs. Relative efficiency was then calculated as the ratio of the MSE of the

sampler of interest over the MSE of the independence proposal.

14



4.4 Results

Summaries of the four dimensional results are given in tables 3, 4 and 5. In addition, Figure
5 gives representative plots of the MSE for the estimated mean of each sampler as a function
of the number of iterations. Summaries of the twenty dimensional results are given in tables
6, 7 and 8. In the tables and figures, we use the following acronyms: “Indep” for the
independence sampler, “CNM” for the componentwise Metropolis sampler, “NM” for the
random-walk Metropolis sampler, and “NKC” for the Normal Kernel Coupler.

The simulation results show that, as expected, the custom independence proposal gives
the lowest MSE when the true covariance of the modes is known. When the true covari-
ance is unknown and must be estimated, the NKC has the best overall performance. The
performance benefit of the NKC is more apparent in twenty dimensions than in four and is
especially clear for the twenty dimensional multi-modal distributions. Notably, the ”tuned”
NKC, is more efficient overall than either of the Metropolis samplers constructed using the
true covariance of the target distribution. This result holds for both unimodal and bimodal
distributions.

When the variance is easy to estimate, as is the case of targets with spherical modes in
four dimensions, the independence proposal with the multi-stage tuning method performs
at least as well as the NKC. Even in the cases where the tuned independence proposal
performed better than the NKC, the performance loss by using the NKC was at most 50%.

The NKC seems to have the greatest performance benefit when the variance of the modes
is difficult to estimate. The performance benefit of the NKC over the other tuned methods
for more difficult problems was often 500% and sometimes several orders of magnitude.

Taken together, the simulation results show that the NKC outperforms the commonly
applied random-walk samplers, across a range of problem types and dimensions even when
these use the true posterior variance and the “optimal” scaling. The NKC also outperforms

the custom independence sampler when the true mode variance is unknown.
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Table 3: All four dimensional distributions: MSE at 10,000 iterations. MSE values have
been multiplied by 1 x 105 and are accurate to within +30%. Note that the “Indep” sampler
with the “True” variance samples directly from the posterior distribution except in one case

(HeavyAndLight).

Variance | Mean | 2.5% Quantile | 97.5% Quantile | Accept
Sampler Est. MSE MSE MSE Rate
Indep True 11 121 423 0.95
CNM True 125,000 314,000 157,900 0.17
NM True 107,00 33,800 615 0.11
NKC True 421 155 407 0.44
Indep 3-Stage 1,940 6,710 619 0.74
CNM 3-Stage | 125,000 300,000 151,000 0.36
NM 3-Stage | 122,000 354,000 181,000 0.54
NKC 3-Stage 176 245 390 0.47

Table 4: Unimodal four dimensional distributions: MSE at 10,000 iterations. MSE values
have been multiplied by 1 x 10% and are accurate to within +30%. Note that the “Indep”
sampler with the “True” variance samples directly from the posterior distribution.

Variance | Mean | 2.5% Quantile | 97.5% Quantile | Accept
Sampler Est. MSE MSE MSE Rate
Indep True 12 2,650 2,450 1.00
CNM True 14,700 25,700 18,800 0.31
NM True 840 5,800 5180 |  0.21
NKC True 46 1,320 1,550 0.55
Indep 3-Stage 497 3,320 5,590 0.71
CNM 3-Stage | 19,600 29,300 32,300 0.31
NM 3-Stage | 4,940 7.430 0170 |  0.24
NKC 3-Stage 76 1,620 1,290 0.57
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Table 5: Bimodal four dimensional distributions: MSE at 10,000 iterations. MSE values
have been multiplied by 1 x 10° and are accurate to within £30%. Note that the “Indep”
sampler with the “True” variance samples directly from the posterior distribution except in
one case (HeavyAndLight).

Variance | Mean | 2.5% Quantile | 97.5% Quantile | Accept
Sampler Est. MSE MSE MSE Rate
Indep True 187 138 5,570 0.91
CNM True 218,000 5,470,000 2,730,000 0.07
NM True 18,700 587,000 6,880 0.04
NKC True 733 1,720 5,960 0.36
Indep 3-Stage 3,370 115,000 6,650 0.76
CNM 3-Stage | 217,000 5,220,000 2,610,000 0.40
NM 3-Stage | 213,000 6,190,000 3,160,000 0.77
NKC 3-Stage 303 3,080 5,860 0.39

Table 6: All twenty dimensional distributions: MSE at 100,000 iterations. MSE values have
been multiplied by 1 x 10° and are accurate to within +30%. Note that the “Indep” sampler
with the “True” variance samples directly from the posterior distribution except in one case

(HeavyAndLight).

Variance Mean 2.5% Quantile | 97.5% Quantile | Accept
Sampler Est. MSE MSE MSE Rate
Indep True 10 1,370 4,520 0.95
CNM True 1,240,000 3,120,000 1,580,000 0.17
NM True 996,000 2,400,000 1,090,000 0.09
NKC True 138,000 25,200 18,700 0.04
Indep 3-Stage | 1,360,000 1,180,000 3,610,000 0.24
CNM 3-Stage | 1,230,000 3,000,000 1,520,000 0.43
NM 3-Stage | 1,240,000 2,960,000 1,600,000 |  0.31
NKC 3-Stage 190,000 281,000 20,000 0.03
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Figure 5: MSE for means from the four dimensional simulation. Two representative plots.
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Table 7: Unimodal twenty dimensional distributions: MSE at 100,000 iterations. MSE values
have been multiplied by 1 x 10° and are accurate to within +30%. Note that the “Indep”
sampler with the “True” variance samples directly from the posterior distribution.

Variance | Mean | 2.5% Quantile | 97.5% Quantile | Accept
Sampler Est. MSE MSE MSE Rate
Indep True 1 3,180 3,150 1.00
CNM True 18,300 44,200 28,600 0.30
NM True 3,650 10,200 11,800 0.17
NKC True o8 11,700 11,600 0.06
Indep 3-Stage 8,480 316,000 309,000 0.37
CNM 3-Stage | 16,900 40,100 30,000 0.41
NM 3-Stage 5,710 47,300 39,000 0.30
NKC 3-Stage 1,880 17,700 14,300 0.05

Table 8: Bimodal twenty dimensional distributions: MSE at 100,000 iterations. MSE values
have been multiplied by 1 x 10° and are accurate to within +30%. Note that the “Indep”
sampler with the “True” variance samples directly from the posterior distribution except in
one case (HeavyAndLight).

Variance | Mean | 2.5% Quantile | 97.5% Quantile | Accept
Sampler Est. MSE MSE MSE Rate
Indep True 16 13 9,550 0.91
CNM True 2,160,000 5,430,000 2,740,000 0.07
NM True 1,740,000 4,190,000 1,900,000 0.03
NKC True 241,000 35,300 24,100 0.03
Indep | 3-Stage | 2,380,000 1,820,000 6,090,000 | 0.13
CNM | 3-Stage | 2,140,000 5,210,000 2,630,000 |  0.45
NM 3-Stage | 2,160,000 5,150,000 9,770,000 |  0.31
NKC 3-Stage 331,000 478,000 24,200 0.02
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Figure 6: MSE for means from twenty dimensional simulation. Two representative plots.

—e— Independent Ideal
L -A-  Independent 3Stage
o -+~ CNM Ideal
x- CNM 3Stage
NM Ideal
- NM 3Stage
Q NKC Ideal
S -%- NKC 3-Stage
[N
- DR A--ooo- A oo ANeommmmeee A
§ =
£ o©
S
o V.. A4
%) N N
= ~ e \
o N o \
4 x-_ g \
3 T X x
\
N \
\
Y
0 \
o 4 A
(=} v
\
AR
8 - =St ’-z:_*.q-:tr:«-:‘,*
o
T T T T T
2e+04 4e+04 6e+04 8e+04 1le+05
number of iterations
« ” H
(a) “OneMode” Spherical Normal
—e— Independent Ideal
° -A-  Independent 3Stage
© 7 -+ CNM Ideal
- CNM 3Stage
NM Ideal
-— NM 3Stage
3 - NKC Ideal
-%- NKC 3-Stage
,,,,,,,,,,, A
Ao A==
o | .-
g .
H A
£ -
S A, .
4 8 e
=
oo B e o #
o
N
o
=
Fooeey
AREE ST Komm Kommm e *
o - o o o o o o
T T T T T
2e+04 4e+04 6e+04 8e+04 le+05

number of iterations

(b) “HeavyAndLight” One large normal with low probability, and one
small normal with high probability

20



5 Application: Genetic Instability of Esophageal Can-
cers

Cancer cells undergo a number of genetic changes during neoplastic progression, including
loss of entire chromosome sections. When an individual patient has two different alleles
for a particular gene, the loss of a chromosome section containing one allele by abnormal
cells, termed “Loss of Heterozygosity” (LOH), can be detected using laboratory assays.
Chromosome regions with high rates of LOH are hypothesized to contain genes which regulate
cell behavior so that loss of these regions disables important cellular controls.

The Seattle Barrett’s Esophagus research project (Barrett et al., 1996) has collected
LOH rates from esophageal cancers for 40 regions, each on a distinct chromosome arm. The
intent is to locate “Tumor Suppressor Genes” (TSGs), whose deactivation contributes to the
development of esophageal cancer (Fearon, 1998; Klein, 1987). Chromosome regions with
high rates of LOH (“systematic LOH”) are hypothesized to contain TSGs, (Newton et al.,
1998; Marshall, 1991). In addition to LOH of regions containing TSGs, there is also a high

Figure 7: Histogram (bars and left axis) and kernel density estimate (curve and right axis)
for the Barrett’s LOH data. Text labels give the location of each chromosome arm.
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level of “background” LOH which is thought to be a consequence, rather than a cause, of
neoplastic progression. A histogram of the relative frequency of LOH for the Barrett’s data
is shown in Figure 7.

The immediate goal of this analysis is to determine the probability of LOH for both the
“background” and TSG groups. This will enable the development of a simple discrimination
method. Since the labeling of the two groups is unknown, we model the LOH frequency using
mixture models, as described by Desai (2000). While several models have been considered,
we will focus on a hierarchical Binomial-BetaBinomial mixture model:

X; ~ n Binomial(V;,m)
+ (1 — n) Beta-Binomial(V;, 2, )
n ~ Unif]0, 1]
m ~ Unif]0, 1]
me ~ Unif]0, 1]
v ~ Unif[-30, 30]
where 7 is the probability of a location being a member of the binomial group, m; is the
probability of LOH in the binomial group, 75 is the probability of LOH in the beta-binomial
group, and 7y controls the variability of the beta-binomial group (on the logit scale)

We have parameterized the Beta-Binomial so that - is a variance parameter defined on
the range —oo0 < 79 < 00. As 75 — —oo the beta-binomial becomes a binomial and as
72 — 400 the beta-binomial becomes a uniform distribution on [0,1]. This results in the

unnormalized posterior density

N

p(n, T, m2,7) ZHf(xi,niln,m,m,wz) (2)
i=1
on the prior range, where
n T n—x
Faalmman) = o) —m) )
r(L [z + 22
+ (1 - n) "’ s (w21)—7r ( 1—7 "-’2) 1
) TEAT () Tn—z+ 2)0(n+ )



exp(7)
2(1+exp(7))

Unlike most mixture models, where all of the components come from the same parametric

and wy =

family, the proposed model mixes two different distributions; a binomial (with one parameter)
and a beta-binomial (with two parameters). We have intentionally omitted fixing which
mixture component corresponds to the background group and which corresponds to the TSG
group so that we can discover which of the two possible arrangements is better supported by
the data. As a consequence, the model has two well separated non-symmetric modes, both
of which may contribute considerable probability mass. Thus, accurate estimation of this

posterior density requires effective sampling from both modes.

5.1 Fitting

To locate posterior modes, we employed the Nelder-Mead function maximizer provided with
the software package R (Ihaka & Gentleman, 1996). We started the maximizer from a large
number of initial states sampled from the prior. This yielded two well separated, peaks one
at (0.903, 0.228, 0.708, 3.54) and another at (0.078, 0.832, 0.230, -18.51). The first mode has
log-likelihood of —88.09, while the second is somewhat lower at —90.01. In the absence of
other information, we would expect the modes to have posterior probability of approximately
0.87=1/(1 + exp(—90.01 — (—88.09))) and 0.13 = 1 — 0.87, respectively.

We constructed the NKC using 120 component states and initialized half of the states to

each of the two local maxima. Starting with the prior variance, we used two preliminary runs

Table 9: Parameters and likelihood maxima for the Binomial-BetaBinomial model.

Likelihood Maxima

Parameter Description Mode 1 Mode 2
n Proportion in Group 1 0.903 0.078
m Group 1 probability of LOH 0.228 0.832
o Group 2 probability of LOH 0.708 0.230
Y2 Variability of LOH in Group 2 3.54 -18.51
Log-Likelihood -88.09 -90.01

23



of 6,480 iterations (54 complete scans) to estimate the variance of the two modes. We then
ran the NKC for 23,640 iterations (197 complete scans) to generate samples for estimation.
(See the Warnes (2000b) for a complete description of the fitting process.) Using the output
from the NKC, we estimated posterior means and credible regions for the entire posterior

distribution as well as for the individual modes.

5.2 Results

Using the output from the NKC, we estimated posterior means and credible regions for the
entire posterior distribution as well as for the individual modes. Table 10 gives these esti-
mates, as well estimates obtained by direct numerical integration using adaptive quadrature
(Berntsen et al., 1991).

Figure 8 gives a 2 dimensional histogram constructed from the output of simulation 3

Figure 8: 2-d histogram of the joint marginal density of 7; and 7, generated from the MCMC
simulation. Bins are boxes of side length 0.01 and intensity is proportional to log-frequency.
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Table 10: Means and 95% credible intervals for the Binomial-BetaBinomial model

Overall Estimates

Adaptive Estimates
Quadrature | Mean | 2.5% Quantile | 97.5% Quantile
i 0.832 0.82 0.0748 0.965
it 0.246 | 0.257 0.193 0.829
D) 0.617 | 0.612 0.23 0.912
Y2 12.82 12.3 -21.2 29.3
Prob(Mode 1) 0.970 | 0.954
Prob(Mode 2) 0.030 | 0.047
Mode 1 Estimates
Adaptive Estimates
Quadrature | Mean | 2.5% Quantile | 97.5% Quantile
n 0.854 | 0.856 0.656 0.966
™ 0.229 | 0.229 0.192 0.266
T 0.629 | 0.631 0.318 0.913
Y2 13.73 13.7 -4.97 -29.3
Mode 2 Estimates
Adaptive Estimates
Quadrature | Mean | 2.5% Quantile | 97.5% Quantile
n 0.091 | 0.0839 0.0174 0.219
™ 0.825 0.832 0.741 0.914
o 0.232 0.23 0.199 0.261
Yo -16.28 -17.5 -29.5 -4.11
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Figure 9: Histogram and fitted distributions (curves) for the Barrett’s LOH data
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clearly showing the asymmetry of the two modes. We estimate that smaller mode contains
only 4.7% of the posterior mass. For this mode, the variance parameter vy is very small
(—17.5), forcing the BetaBinomial component to act like a Binomial. The fact that the
preferred mode uses the Binomial mixture to explain the background loss rate and that the
secondary mode forces the BetaBinomial to act like a Binomial with the same mean suggests
that a binomial model is sufficient for the “background” probability of LOH.

While both modes estimate the LOH probability in the “background” group to be ap-
proximately 0.23, the two modes give quite different distributions for the TSG group. Figures
10(a) and 10(b) plot the fitted distributions for each mode against a histogram of the original
data. Figure 10(b) shows that the “Binomial-Binomial” mode assigns most of the mass for
the TSG group to a binomial which has its density concentrated near 0.83. In contrast,
Figure 10(a) shows that the larger “Binomial-BetaBinomial” mode, which contains roughly
96% of the posterior probability, spreads the TSG group much wider, with considerable
probability density over the range of the “background” group.
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Figure 10: Posterior probability (curve, right axis) of membership in the TSG group. The
histogram (left axis) shows the observed LOH rate with text labels giving the location of each
chromosome arm. Chromosome arms with 50% or higher posterior probability of membership
in the TSG group are labeled in red.
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Figure 10 plots the estimated posterior probability of belonging to the TSG group as a
function of the LOH rate. Regions with LOH frequencies above 50% almost certainly belong
to the TSG group, while regions with loss rates below 50% are more likely to belong to
the background group, although there is still a possibility that they belong instead to TSG
group.

Only five chromosome arms have a TSG group membership probability above 10%: 1p,
13q, 9p, 5q and 17p. Of these, only 9p, 5q, and 17p, with memberships probabilities 0.975,
>0.999, and >0.999, are more likely to belong to the TSG group than the background group.
This aligns well with research on the biology of TSGs and the role of LOH in the inactivation
of these genes.

In particular, 17p is the location of the p53 (TP53) gene and 9p is the location of the p16
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Table 11: Chromosome Arms with more than 10% posterior probability of belonging to the
TSG group.

Chromosome  Observed Binomial Posterior
Arm Prob(LOH) Quantile Prob(TSG)
1p 0.41 0.98 0.14
13q 0.43 0.98 0.15
18q 0.46 0.99 0.21
9p 0.65 > 0.99 0.98
5q 0.80 > 0.99 > 0.99
17p 1.00 > 0.99 > 0.99

(CDKN2A) gene. Barrett et al. (1999) showed that LOH of 17p and 9p, along with mutation
or hyper-methylation of the remaining p53 or p16 allele is necessary for the development of
esophageal cancer from Barrett’s epithelium. Barrett et al. (1999) also evaluated the role
of LOH at 5q, 13q, and 18q in the development of cancer. For these sites they found no

evidence that LOH was required for the development of cancer.

6 Discussion

In this text, we have introduced the Normal Kernel Coupler, a conceptually simple method
for sampling from posterior distributions that can be applied whether the target distribution
has one or several modes. We have proven that the NKC is a ergodic MCMC sampler for
any continuous distribution on d-dimensional Euclidean space. We have also shown that the
NKC outperforms standard random-walk Metropolis samplers and a custom independence
sampler when the true variance is unknown. In fact, the NKC outperforms the random-walk
Metropolis samplers constructed using the true posterior variance. We have demonstrated
these methods on a real example using a model with two distinct and dissimilar modes. The
results from fitting this model using the NKC compare favorably with with those obtained
by adaptive quadrature at much lower computational cost.

The current implementation of the NKC is inefficient in high dimensions. In part, this
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is a consequence of updating all of the parameters of a given component state as a block.
While it would be possible to update only a small subset of the parameters, this is not a
reasonable approach in the context of multiple modes because it prevents moves between
unconnected modes that do not lie along the coordinate axes. Instead, we are exploring an
approach similar to the Adaptive Direction Sampler (Gilks et al., 1994), where updates are
generated on a subspace selected adaptively using the set of current states.

Another method of improving the performance of the NKC in high dimensions is to
“retry” failed proposals. The idea, introduced by Tierney & Mira (1999), is to generate a
second candidate point from a different proposal distribution if the initial proposal is rejected.
This second candidate point is then accepted or rejected using an adjusted acceptance func-
tion. By this means, when a NKC proposal is rejected, a standard random-walk Metropolis
step can be performed instead. This would increase the overall acceptance rate, and would
allow for more local moves than otherwise possible.

The flexibility and performance of the NKC on a variety of unimodal and multi-modal
distributions makes it a promising tool for sampling from multi-modal distributions in low
and moderate dimensions. Software implementing the NKC is available as part of the Hydra
MCMC library (Warnes, 2000b; Warnes, 2001) developed by the author and available free
of charge from the author’s web site (Warnes, 2000a).
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A  Proof of Theorem 1

Proof 1

1. Wi')-irreducible

The transition kernel P for the NKC from a point = to a set A is

Pz, A) = / 0. (2, v)alz, y)u(dy),

and the n-step transition kernel is defined recursively by

Pz, A) = / P(x, dy) P™D(y, A)

for n > 2 where P(z,dy) is the probability of moving to a small measurable subset

dy C S given that the move starts at x.

We need to show that for all z € R and A C R4*C there is a value of n for which

P"(z, A) > 0 for whenever 7, (A) > 0. (4)

First, note that the conditions on h?V guarantee that

C
g (YPIXO) =3 "Ny(YP X, p?V) >0  forall Y € R and X0 € RO .

(5)
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Consequently,

(6)

i i (1) y (=)
(XD, YD X)) = min{ 1, p(Y®) qk(Y(? — XX, .) 0
P(X®) gp(X{ = YOIX™)

whenever p(Y®) oc 7(Y®) > 0.
Let P(X® Y®|X0) be the transition kernel for a single step of the NKC which
updates component ¢ conditional the set of current states. Without loss of generality,

assume that the permutation defining the order of component updates is 1,2, ..,C.

Now, the transition probability for one complete scan of the C' component states is

c
pC(X(')’Y(')) - HP(X(Z'),Y(i)‘(y(l,--ifl),X(i,--,C))) (7)
i=1
(&
= J[{a@ @t X6-9) x (8)
i=1
Of(X(i), Y(i)‘(Y(l,..ifl)’ X(i,..,C))) } (9)

> 0 forall XO Y0 € R*C whenever 7, (X)) >0  (10)

by (5) and (6). Since this holds for any Y) € A ¢ R?*¢ the NKC is irreducible for

M.

. Harris recurrent

Chan & Geyer (1994) give sufficient conditions for an irreducible variable-at-a-time

Metropolis-Hastings sampler to be Harris recurrent:

Theorem 3 A variable-at-a-time Metropolis-Hastings algorithm on R® with proposal
distributions that are absolutely continuous with respect to Lebesque measure is Harris
recurrent if all of the conditional samplers (including the unconditional sampler which
conditions on the empty set of variables I = ()) are irreducible for any values of the

fized variables.
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The essence of the Chan-Geyer condition is that the sampler is Harris recurrent if
updates on any subset of the components I = {iy, .., i}, conditional on the remaining
components I~ = {ig,1,..,ic}, are irreducible for any fixed values of the components

I". See Chan & Geyer (1994) for the proof.

For the NKC, the Chain-Geyer condition is easily verified. Consider the k-step transi-

tion kernel for the conditional sampler with C' — k& components held fixed:
P (X(I |X(I ) — HP (1 i—1) X(z, 5 )) X(_[))
= HP(X(i)a YO (y(eisD x(0)))

— H{Qk z)‘ y (L z'fl),X(z',..,C))) x

a(X(i)’ y(i)|(y(1,--i—1)’ X(i,--,C))) }

> 0 forall XD yU) e Rixk and X1 ¢ pIxC—k

whenever 7, (X)) > 0.

Consequently, each of the conditional samplers is irreducible, the requirements of the-
orem 3 are met, and the NKC is Harris recurrent. Since the chain has invariant distri-
bution 7, by construction, the conditions to Tierney (1996) Theorem 4.2 and 4.3 are
met. Consequently, the NKC has 7, as its unique invariant distribution, it converges
to this distribution, and sample path averages computed using NKC converge to the

true expectation under m,.

. Aperiodic

Recall that an m-cycle for an irreducible chain with transition kernel P is a collection

{Fy, E1,...,E,_1} of disjoint sets such that

P(z,E;) =1for j =i+ 1 mod m and for all z € E;.
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Define the support S of 7, as S = {z € R4 : 7, (z) > 0}. Without loss of generality,

we can assume that E; C S for i =0,...,m — 1. Now, if an m-cycle is present, then

P'(z,E) =1for k =14+t mod m and for all x € E;.

Consider t = C. We have previously shown that P¢(z, A) > 0 for all z € R and
A € S. Consequently P¢(z,Ey) = 1for all X € E; can only hold if m = 1 so that
Ey = E, = §. Since the largest cycle length is 1, the NKC is aperiodic.
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